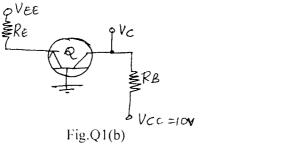
CBCS Scheme

USN 15EE34

Third Semester B.E. Degree Examination, June/July 2017 Analog Electronic Circuits

Time: 3 hrs. Max. Marks: 80


Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Explain DC analysis of collector to base bias circuit.

(05 Marks)

b. For the biasing circuit as shown in Fig.Q1(b), calculate I_E , I_C , V_C and V_{CE} . Given that $V_{EE} = -8V$, $R_E = 2.2 \text{ k}\Omega$, $R_B = 1.8 \text{k}\Omega$, $\beta = 100$. (05 Marks)

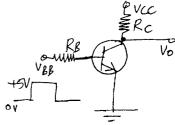
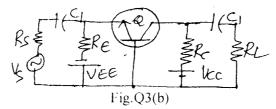


Fig.Q2(c)

c. For emitter stabilized bias circuit $V_{CC} = 10V$, $R_C = 1k\Omega$, $R_E = 500\Omega$, $R_B = 100$ k Ω , $\beta = 100$. Calculate I_B , I_C , V_{CE} , V_E and V_C . Draw the circuit diagram. (06 Marks)

OR

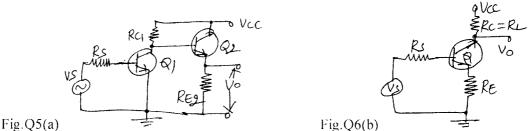

2 a. For the fixed bias circuit, derive expressions for S_{ICO} , S_{β} and S_{VBE} .

(06 Marks)

- b. For a voltage divider bias circuit, $R_C = 1k\Omega$, $R_E = 470\Omega$, $R_1 = 10k\Omega$, $R_2 = 5 k\Omega$,, $\beta = 100$. Determine the stability factor S_{ICO} . Draw the circuit diagram. (05 Marks)
- For the circuit shown in Fig.Q2(c), calculate the value of R_B that just saturates the transistor when $V_i = \pm 5V$. Given that $R_C = 1k\Omega$, $\beta = 100$, $V_{CC} = 5V$, $V_{CE sat} = 0.2V$. (05 Marks)

Module-2

- 3 a. Explain hybrid equivalent model for a transistor. Develop h-parameter model for a transistor in CE, CB and CC modes. (08 Marks)
 - b. For the common base circuit shown in Fig.Q3(b), $R_C = 10 \text{ k}\Omega$, $R_E = 5 \text{ k}\Omega$, $R_S = 1 \text{ k}\Omega$, $R_L = 12 \text{ k}\Omega$, $h_{ib} = 22\Omega$, hob = 0.49 μ A/V, $h_{rb} = 2.9 \times 10^{-4}$. $h_{tb} = -0.98$, Use exact h-parameter model. Calculate A_1 , A_1 , A_2 and A_{VS} .


OR

- 4 a. Explain the low frequency response by considering input RC network, output RC network.

 (08 Marks)
 - b. Calculate the high frequency response of amplifier circuit. Assume $R_C = 2.2k\Omega$, $R_E = 1k\Omega$, $R_1 = 68k\Omega$, $R_2 = 22k\Omega$, $R_S = 680\Omega$, $\beta = 100$, $C_{W_1} = 6pF$, $C_{W_0} = 8pF$, $C_{ce} = 1pF$, $C_{be} = 20$ pF, $C_{be} = 4pF$, $h_{ie} = 1.1$ k Ω , $V_{CC} = 10$ V. Draw the circuit diagram, $R_L = 10k\Omega$. (08 Marks)

Module-3

5 a. For the 2-stage amplifier circuit as shown in Fig.Q5(a), $R_S = 1 \text{ k}\Omega$, $R_{C1} = 3.3 \text{ k}\Omega$, $R_{E2} = 4.7 \text{ k}\Omega$, $h_{1e} = 2 \text{ k}\Omega$, $h_{fe} = 50$, $h_{re} = 0$, $h_{oe} = 0$, calculate the overall voltage gain Av and overall Z_0 .

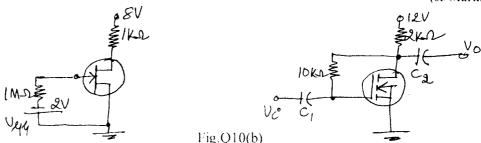
b. For Darlington emitter follower circuit, obtain an expression for overall current gain A_i .

(08 Marks)

OR

6 a. For voltage series feedback topology obtain expressions for Av and R_{if} . (08 Marks) b. For the current series feedback as shown in Fig.6(b), $R_L = 2.2 \text{ k}\Omega$, $R_E = 1.2 \text{ k}\Omega$., $R_B = 1 \text{ k}\Omega$. $h_{ie} = 1.1 \text{ k}\Omega$, $h_{fe} = 50$, calculate G_M , β , D, G_{MF} . (08 Marks)

Module-4


- 7 a. For transformer coupled class A power amplifier, obtain DC and AC operation and expression for maximum efficiency. (08 Marks)
 - b. A class B push pull amplifier drives a load of 16Ω , $V_{CC} = 25V$, number of turns in primary = 200 and that in secondary is 90. Calculate maximum power output, efficiency and maximum power dissipation per transistor. (08 Marks)

OR

- 8 a. State and explain Barkhausen criterion for sustained oscillations. (05 Marks)
 - b. Derive an expression for frequency of oscillations in Wien bridge oscillator. (08 Marks)
 - c. Calculate the frequency of oscillations of colpitts oscillator if $C_1 = 150$ pF, $C_2 = 1.5$ nF and $\alpha = 50$ μ H. (03 Marks)

Module-5

- 9 a. What are the advantages and drawback of FET Vs BJT? (05 Marks)
 - b. For the circuit shown in Fig.Q9(b), calculate V_{GSQ} , I_{DQ} , V_{DSQ} and V_{D} given $I_{DSS} = 10 \text{m} \Lambda$ and $V_p = -4V$. (05 Marks)

c. For JEET, obtain the condition for zero current drift.

Fig.O9(b)

(06 Marks)

OR

10 a. Explain construction, working and characteristics of n-channel depletion type MOSFET.

(08 Marks)

b. For the circuit shown in Fig.Q10(b), calculate V_{GS} , I_{D} and V_{DS} . Given, I_{D} on = 6mA, V_{GS} on 8V, $V_{GSTH} = 3V$. (08 Marks)

* * * * *